Monthly Archives: August 2019

Missing Value Imputation with Restricted Boltzmann Machine Neural Network

Missing value is a common problem in many real world data set. There are various techniques for imputing missing values. We will use a kind of Neural Network called RBM for imputing missing values. Restricted Boltzmann Machine (RBM) are stochastic … Continue reading

Posted in Data Science, Deep Learning, ETL, Machine Learning, Python | Tagged , , , | Leave a comment

Encoding High Cardinality Categorical Variables with Feature Hashing on Spark

Categorical variables are ubiquitous in data. They pose a serious problem in many Data Science analysis processes. For example, many supervised Machine Learning algorithms work only with numerical data. With high cardinality categorical variables, popular encoding solutions like One Hot … Continue reading

Posted in Big Data, Data Science, ETL, Scala, Spark | Tagged , , | Leave a comment