Category Archives: Big Data

Data Normalization with Spark

Data normalization is a required data preparation step for many Machine Learning algorithms. These algorithms are sensitive to the relative values of the feature attributes. Data normalization is the process of bringing all the attribute values within some desired range. Unless … Continue reading

Posted in Big Data, Data Science, ETL, Machine Learning, Spark | Tagged , , | Leave a comment

Removing Duplicates from Order Data Using Spark

If you work with data, there is a high probability that you have run into duplicate data in your data set. Removing duplicates in Big Data is a computationally intensive process and parallel cluster processing with Hadoop or Spark becomes … Continue reading

Posted in Big Data, Data Science, ETL, Spark | Tagged , | Leave a comment

Combating High Cardinality Features in Supervised Machine Learning

Typical training data set for real world machine learning problems has mixture of different types of data including numerical and categorical. Many machine learning algorithms can not handle categorical variables. Those that can, categorical data can pose a serious problem … Continue reading

Posted in Big Data, Data Science, Data Transformation, ETL, Hadoop and Map Reduce, Predictive Analytic | Tagged , , , | Leave a comment

Handling Rare Events and Class Imbalance in Predictive Modeling for Machine Failure

Most supervised Machine Learning algorithms face difficulty when there is class imbalance in the training data i.e., amount of data belonging one class heavily outnumber the other class. However, there are may real life problems where we encounter this situation e.g., … Continue reading

Posted in Big Data, Data Science, ETL, Hadoop and Map Reduce | Tagged , , , , | Leave a comment

Measuring Campaign Effectiveness for an Online Service on Spark

Measuring campaign effectiveness is critical for any company to justify the marketing money being spent. Consider a company providing a free online service on signup. It’s critical for the company to convert them so that they subscribe to a paid … Continue reading

Posted in Big Data, Data Science, Marketing Analytic, Spark | Tagged , , | Leave a comment

Processing Missing Values with Hadoop

Missing values are just part of life in the data processing world. In most cases you can not simply ignore the missing values as it may adversely affect whatever analytic processing you are going to do. Broadly speaking, handling missing … Continue reading

Posted in Big Data, Data Profiling, Data Science, ETL, Hadoop and Map Reduce | Tagged , , | Leave a comment

Mining Seasonal Products from Sales Data

The other day someone asked me how to include products with seasonal demand in recommendations based on collaborative filtering or some other technique. The solution to the problem involves two steps. The first step is to identify products with seasonal … Continue reading

Posted in Big Data, Data Mining, Data Science, eCommerce, Map Reduce, Recommendation Engine | Tagged , , , | Leave a comment