Category Archives: ETL

Plugin Framework Based Data Transformation on Spark

Data transformation is one of the key components in most ETL process. It is well known, that in most data projects, more than 50% of the time in spent in data pre processing. In my earlier blog, a Hadoop based … Continue reading

Posted in Big Data, Data Science, ETL, Scala, Spark | Tagged , | Leave a comment

Bulk Mutation in an Integration Data Lake with Spark

Data lakes act as repository of data from various sources, possibly of different formats. It can be used to build data warehouse or to perform other data analysis activities. Data lakes are generally built on top of Hadoop Distributed File … Continue reading

Posted in Big Data, Data Warehouse, eCommerce, ETL, Spark | Tagged , , , , | Leave a comment

Pluggable Rule Driven Data Validation with Spark

Data validation is an essential component in any ETL data pipeline. As we all know most Data Engineers and Scientist spend most of their time cleaning and preparing their data before they can even get to the core processing of … Continue reading

Posted in Big Data, Data Science, ETL, Spark | Tagged , | 2 Comments

Leave One Out Encoding for Categorical Feature Variables on Spark

Categorical feature variables is a thorny issue for many supervised Machine Learning algorithms. Many learning algorithms can not handle categorical feature variables. In this post, we will go over an encoding scheme called Leave One Out Encoding, as implemented with … Continue reading

Posted in Big Data, Data Science, ETL, Spark | Tagged | 2 Comments

Handling Categorical Feature Variables in Machine Learning using Spark

Categorical features variables i.e. features variables with fixed set of unique values  appear in the training data set for many real world problems. However, categorical variables pose a serious problem for many Machine Learning algorithms. Some examples of such algorithms … Continue reading

Posted in Big Data, Data Science, Data Transformation, ETL, Scala, Spark | Tagged , , | Leave a comment

Data Normalization with Spark

Data normalization is a required data preparation step for many Machine Learning algorithms. These algorithms are sensitive to the relative values of the feature attributes. Data normalization is the process of bringing all the attribute values within some desired range. Unless … Continue reading

Posted in Big Data, Data Science, ETL, Machine Learning, Spark | Tagged , , | Leave a comment

Removing Duplicates from Order Data Using Spark

If you work with data, there is a high probability that you have run into duplicate data in your data set. Removing duplicates in Big Data is a computationally intensive process and parallel cluster processing with Hadoop or Spark becomes … Continue reading

Posted in Big Data, Data Science, ETL, Spark | Tagged , | 2 Comments